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J .  Phys. A: Math. Gen. 18 (1985) 803-807. Printed in Great Britain 

Algebraic solution of a non-trivial oscillator problem 

Bernd Schuh 
Institut fur Theoretische Physik, Universitat Koln, D-5000 Koln 41, West Germany 

Received 17 July 1984 

Abstract. The energy spectrum of an electron confined to an anisotropic oscillator potential 
and moving in homogeneous crossed electric and magnetic fields is determined algebrai- 
cally. The method is an instructive example of a non-invariance group approach. The 
result is useful for the computation of for example size effects on diamagnetic properties 
of non-spherical small metallic particles. 

The aim of this paper is to solve the mathematical problem represented by equation 
(3). For pedagogical clarity, however, I shall start with a well defined physical problem. 

Consider a non-relativistic electron of mass m and charge - e (  e > 0) moving in a 
homogeneous magnetic field B and confined by an anisotropic oscillator potential. Its 
Hamiltonian is thus given by 

H =  Ho+ V 
(1) 

= ( p +  ( e / ~ ) A ) ~ / ( 2 m ) + ; x * R : m  +iy2R:m +iz2R:m. 

What is the significance of this Hamiltonian? The oscillator potential may be 
interpreted as ‘soft’ walls confining the electron motion to a vessel defined by the 
equipotential lines V = constant. If all R i  approach zero, the limit of an infinite system 
with a freely moving electron (apart from the magnetic field) is recovered. If ( 1 ) were 
used to describe a system of non-interacting electrons of fixed density ne one would 
choose the R i  size dependent (i.e. dependent on the dimensions of the actual box to 
which the electrons are confined, and which is to be simulated by the soft walls) such 
that in the thermodynamic limit the R,  approach zero in such a way as to keep the 
density ne fixed. 

Thus, with finite ai, one can study, for example, size effects on the properties of 
metallic electrons confined to a small particle and subject to an external magnetic field. 
All one needs is the single particle spectrum of (1) because with it the density of states 
and all thermodynamic properties may be calculated. 

In fact, Denton (1973) has carried out an extensive study of diamagnetic properties 
of small metallic particles on the basis of ( 1 )  with 0, =0,  R ,  = Q 2  and the magnetic 
field pointing along the symmetry axis x3.  The level spectrum of this cylindrically 
symmetric case was determined earlier (Darwin 1930) analytically (i.e. by means of a 
power series expansion of wavefunctions). It is a simple exercise to derive the spectrum 
algebraically (i.e. by using only the canonical commutation relations between the 
dynamical variables r and p ) ,  (Schuh 1973). Because of the symmetry, this problem 
is essentially a two-dimensional harmonic oscillator problem. 

0305-4470/85/050803 + 05$02.25 @ 1985 The Institute of Physics 803 



804 E Schuh 

For the case Q ,  # n2, however, the problem appears much less trivial. Its solution, 
to which the rest of the paper is devoted, is meant to encourage the search for simple 
algebraic solutions in different but comparatively simple problems. 

Note first that the dynamical variables corresponding to the symmetry axis of the 
ellipsoid along which the field points constitute no problem. For definiteness let B = (0, 
0, E ) ,  then a gauge can be chosen in which A, = 0 and A , ,  will not depend on z. Thus 
the problem separates into the motion along the field axis and within the perpendicular 
plane: 

H = p i / 2 m  + i z 2 Q : m  + [ pI + ( e / c ) A , I 2 / 2 m  + $ ( R : x 2  + Q : y 2 ) m  

= H z + H 1 .  

Since [H,, H,]  = 0 the spectrum of H is known once that of H, has been determined. 
One may even include an in-plaile homogeneous electric field E and measure the 

confining potential with respect to an arbitrary reference point ( xo, yo),  without enhanc- 
ing the scope of the problem considerably. We shall therefore be concerned with a 
two-dimensional system described by the Hamiltonian 

H 2  = ( 1 / 2 m ) [ p 1  + ( e / c ) A J Z + i m [ n : ( x  - x0)’+ Q:( y - yo ) ’ ]+  eE,  * r, ( 2 )  

where p ,  = ( px,  p , )  etc., and r and p obey canonical commutation relations. 
As a first step we shall show that (2) may be reduced to the following standard form 

h = Pf + x 2  + b( P: + y 2, + c (  X P y  - yp,  1. (3) 

Then the spectrum of (3)  will be determined for arbitrary real numbers b and c. The 
reader who is interested in the result only is referred to (21), ( 2 7 )  or ( 2 8 ) .  

The electric field is conveniently dealt with by completing the square given by the 
last two terms in ( 2 ) .  If we introduce 

fo= xo-  e E , / m R : ,  P o = y o - e E y / m Q :  ( 4 )  

then H2 may be written: 

H2 = ( 1 / 2 m ) [ p ,  + ( e / c ) A , I 2 + $ m Q : ( x  - f,)’+imQ:( y -yo)’+ G ( 5 a )  

with the constant 

G = i m Q : ( x i  - 3;) + ;ma: (  y i  - 7:). 

XI = ( Q l / u ) l / 2 ( x - 2 0 ) ,  

PI = ( w / Q l P 2 P x ,  

( 5 b )  

Next we make a canonical transformation 

x2 = ( Q 2 / 4 1 ’ 2 (  y - 70) 
P2 = (w/Q2)1/2PY 

( 6 )  

and choose the gauge 

A, = - ~ 2 B ( n 2 w ) ” ~ / ( n ~ + n , ) ,  Ay = X ~ E ( Q , W ) ’ / ~ / ( R ,  +a2) ( 7 )  

with w an as yet arbitrary parameter. Of course, the canonical commutation relations 
are preserved by ( 6 ) ,  and rot A = (0, 0, E )  is obviously fulfilled. Equation ( 5 a )  now 
reads 

H2- G = ( n , / w ) ( p : / 2 m + f m o 2 y 2 x : ) + ( n 2 / w ) ( p : / 2 m + ~ m w 2 y 2 x : )  

+wc[(n1n2)’/2/(n1 +n2) l (x lP2-  X Z P , ) .  ( 8 )  
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The abbreviations 

0, = eB/  mc, y2= 1 +w,2/(n,+n2)2 (9) 

b = n2/n,, c =2w,(n2/nl)1’2/[Wf+(n, +R2)2]1’2 (10) 

have been used. Obviously (8) is of standard form (3) if one identifies: 

and chooses units such that mwy = 1. 
Let us now turn to the determination of the spectrum of (3). Instead of giving the 

solution in an elegant and deductive form we shall indicate the way to it in a more 
inductive manner. 

The form of h suggests that we play with the commutation relations of the operators 
p:  + x2 ,  p :  + y 2 ,  and the angular momentum z-component xpy -yp,.  One is readily led 
to consider the three operators 

(11) L = I  
3 - 2 ( X P Y  - Y P X ) ,  

L = I  
2 - 2( P X P Y  + X Y ) ,  L ,  = +( p f :  + x 2 - p ;  +), 

and one can easily verify that these satisfy the angular momentum commutation 
relations: 

C L , ,  LJl = iREIJkLk* (12) 

In other words: the L, form the Lie algebra (under commutation) of the special unitary 
group in two dimensions, SU(2), or likewise the special orthogonal group in three 
dimensions, SO(3). The L, may therefore be interpreted as infinitesimal generators of 
‘rotations’. Thus one is prompted to ask: what are .the ‘rotational’ symmetries of the 
Hamiltonian (3)? The answer may be found by writing h in the form 

h = ( b  + 1)(2J + 1)  + 2 (  1 - b ) L , + 2 ~ L 3  (13) 

J = a (  p’x + x2+p:  + yz- 2) (14) 

[ J ,  &I  = 0, i =  1,2,3. (15) 

L;+ L:+ L : = J ( J +  1 )  (16) 
for the standard quadratic Casimir invariant of the Lie algebra (12). Therefore, the 
spectrum of J is well known; it consists of all half integers (greater or equal to zero). 

Now, by virtue of (13), the problem would be solved if the spectrum of ( 1  - b ) L ,  + 
cL3 was known. Since any transformation L ,  + a L ,  + /3L3, L3 + - p L ,  + 0 L 3 ,  L2+ L2 
with a Z + P 2 =  1 leaves the commutation relations (12) and the Casimir operator 
L: + L: + L: invariant, the three generators 

where 

is easily verified to be a Casimir operator, i.e. 

Moreover, a straightforward calculation yields 

2, [ C L ,  + ( b  - 1)  L3] /d ,  T2= L2, 2 3 = [ c L 3 + ( 1 -  b ) L , ] / d  (17) 

constitute the same Lie algebra as the three L,, and preserve the relation (16), i.e. 

[ 2,, 2, ] = i h  E ~ ~ $ ’ ~  : 2: + 2; + 2: = J ( J  + 1 ) (18) 
as long as d is one of the roots of the equation 

d 2 = c 2 + ( 1  - b ) ’ .  
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Thus, 

h = ( b  + 1)(25 + 1 ) + 2dY3 (20) 

is invariant with respect to ‘rotations’ generated by Y3: [h, Y3] = 0. Choosing the 3-axis 
as the quantisation axis one has G, j - 1 , .  . . , - j +  1, - j }  as the set of possible 
eigenvalues of Y 3  for any fixed eigenvalue j of J. From (20) the spectrum of h is then 
given by: 

spec[ h]  = {( b + l ) j+[c2+ ( 6  - 1)2]”21}, 

JE{l ,2 ,3 , . ‘ .} ,  ! ~ c i - l , j - 3  , . . . ,  - j + 3 ,  - j+ l} .  
(21) 

The spectrum consists of multiplets numbered by a natural number j, with multiplicity 
j .  The level spacing within a multiplet is 2[c2+ ( b  - 1)2]1/2; also the spacing between 
centre-of-mass position of the multiplet is a constant, 6 + 1. The levels of neighbouring 
multiplets do not overlap only if j - 1 < ( b  + 1)/{2[ c2 + ( b  - 1)2]1’2}. 

There is an alternative way to arrive at the result (21). It is straightforward and 
slightly more tedious, but better suited for the determination of wavefunctions. The 
simple idea is to find the canonical transformation U of four-dimensional phase space, 
P‘= ( p , ,  p,, x, y )  (‘t’ denotes the transposed vector), which diagonalises the quadratic 
form (3). To be more specific we write (3) in the form 

i 1  0 0 - c /2 \  

h = P‘MP, M = /  c;2 c:2 0 1 
‘ - c / 2  0 0 b ’  

and diagonalise M. One finds that the orthogonal matrix 

/ 1 1 -s+ - s - \  

\s- -s+ -1 1 i 
with the abbreviations 

CS, E b - 1 * d (24) 

(25) 

diagonalises M: 

diag[ UMU‘] = :( 1 + 6 - d, 1 + b + d, 1 + b - d, 1 + b + d ) .  

Here d denotes the positive root of (19). In terms of the rotated operators P’= U P  
the Hamiltonian h may therefore be written 

h = ~ ( c ~ - + 2 ) ( p : ~ + x ‘ ~ ) + ~ ( c s + + 2 ) ( p ~ ~ + y ’ ~ ) .  (26) 

Since the transformation is canonical (i.e. [x‘, p!J = in, [x‘, pb] = 0 etc.) h is simply 
identified as the linear superposition of two independent harmonic oscillators. Its 
spectrum may therefore be written 

Spec[h] = { ( b  + l)(n, + ny + 1 ) +  d(n, - n,)}, nx.y E (0, 1,2, . . .I. (27) 

Of course, (27) is identical to (21), one only needs to identify j = n,+ n,+ 1 and 
1 = n, - n,. 
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Wavefunctions may now be constructed as usual by applying the appropriate 
to the ground state +&, which is identical to the 

Finally, let us translate the solution back to the original physical problem (8). By 

number of creation operators 
unprimed ground state determined by ax,y+m = 0. 

(21) and (10) the energy levels of H2 can be written as 

E,,= G + ~ w f + ( R I + R 2 ) 2 ] 1 ’ 2 j + ~ w : + ( R I  -R2)2]”24 (28) 

where a g a i n j ~ { 1 , 2  , . . .  } and l ~ ~ - l , j - 3  , . . . ,  - j + l } .  

References 

Darwin C G 1930 hoc.  Camb. Phil. Soc. 27 86 
Denton R V 1973 2. Phys. 265 I19 
Schuh B 1973 Diploma Thesis unpublished 


